Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Some neural representations gradually change across multiple timescales. Here we argue that modeling this “drift” could help explain the spacing effect (the long-term benefit of distributed learning),whereby differences between stored and current temporal context activity patterns produce greater error-driven learning. We trained a neurobiologically realistic model of the entorhinal cortex and hippocampus to learn paired associates alongside temporal context vectors that drifted between learning episodes and/or before final retention intervals. In line with spacing effects, greater drift led to better model recall after longer retention intervals. Dissecting model mechanisms revealed that greater drift increased error-driven learning, strengthened weights in slower drifting temporal context neurons (temporal abstraction), and improved direct cue–target associations (decontextualization). Intriguingly, these results suggest that decontextualization—generally ascribed only to the neocortex—can occur within the hippocampus itself. Altogether, our findings provide a mechanistic formalization for established learning concepts such as spacing effects and errors during learning.more » « lessFree, publicly-accessible full text available November 1, 2025
-
null (Ed.)Abstract Memory consolidation involves the reactivation of memory traces during sleep. If different memories are reactivated each night, how much do they interfere with one another? We examined whether reactivating multiple memories incurs a cost to sleep-related benefits by contrasting reactivation of multiple memories versus single memories during sleep. First, participants learned the on-screen location of different objects. Each object was part of a semantically coherent group comprised of either one, two, or six items (e.g., six different cats). During sleep, sounds were unobtrusively presented to reactivate memories for half of the groups (e.g., “meow”). Memory benefits for cued versus non-cued items were independent of the number of items in the group, suggesting that reactivation occurs in a simultaneous and promiscuous manner. Intriguingly, sleep spindles and delta-theta power modulations were sensitive to group size, reflecting the extent of previous learning. Our results demonstrate that multiple memories may be consolidated in parallel without compromising each memory’s sleep-related benefit. These findings highlight alternative models for parallel consolidation that should be considered in future studies.more » « less
-
null; Mangun, G.R.; Gazzaniga, M.S. (Ed.)The human ability to remember unique experiences from many years ago comes so naturally that we often take it for granted. It depends on three stages: (1) encoding, when new information is initially registered, (2) storage, when encoded information is held in the brain, and (3) retrieval, when stored information is used. Historically, cognitive neuroscience studies of memory have emphasized encoding and retrieval. Yet, the intervening stage may hold the most intrigue, and has become a major research focus in the years since the last edition of this book. Here we describe recent investigations of post-acquisition memory processing in relation to enduring storage. This evidence of memory processing belies the notion that memories stored in the brain are held in stasis, without changing. Various methods for influencing and monitoring brain activity have been applied to study offline memory processing. In particular, memories can be reactivated during sleep and during resting periods, with distinctive physiological correlates. These neural signals shed light on the contribution of hippocampal-neocortical interactions to memory consolidation. Overall, results converge on the notion that memory reactivation is a critical determinant of systems-level consolidation, and thus of future remembering, which in turn facilitates future planning and problem solving.more » « less
-
Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high-performance compute (HPC) clusters, and the same code can be seamlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.more » « less
An official website of the United States government

Full Text Available